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Counting the number of ground states for a spin-glass or nondeterministic polynomial-complete combina-
torial optimization problem is even more difficult than the already hard task of finding a single ground state. In
this paper the entropy of minimum vertex covers of random graphs is estimated through a set of iterative
equations based on the cavity method of statistical mechanics. During the iteration both the cavity entropy
contributions and cavity magnetizations for each vertex are updated. This approach overcomes the difficulty of
iterative divergence encountered in the zero-temperature first-step replica-symmetry-breaking �1RSB� spin-
glass theory. It is still applicable when the 1RSB mean-field theory is no longer stable. The method can be
extended to compute the entropies of ground states and metastable minimal-energy states for other random-
graph spin-glass systems.
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A combinatorial optimization �CO� problem is defined
by an energy function E��� � on configurations ��
= ��1 ,�2 , . . . ,�N� of an N-dimensional space, where each
variable �i has only a finite number of states �e.g., �i= �1�.
For CO problems in the nondeterministic polynomial-
complete �NP-complete� class, searching for configurations
of energy equal or very close to the lowest possible value is
in general a very difficult task. Statistical physicists relate
this computational hardness to the emergence of complex
structures in the problem’s configuration space and the pro-
liferation of metastable macroscopic states �macrostates�.
The entropy spectrum �number of configurations at each
minimal-energy level� gives a characterization of the energy
landscape of a hard CO problem. Using the first-step replica-
symmetry-breaking �1RSB� cavity method of spin-glass
theory �1–3�, the ground-state energy densities for several
hard CO problems on random graphs have been calculated
with high precision �see, e.g., Refs. �2,4,5��. But estimation
of the ground-state entropy and the entropies of metastable
states is still a challenging theoretical and computational
issue.

In the 1RSB cavity approach, the ground-state energy E0

of a hard CO problem is evaluated by first assuming that the
configuration space of the system can be clustered into many
macrostates. A variable i experiences in each macrostate an
integer-valued field hi. The distribution of this field among
all the macrostates, Pi�hi�, is then obtained through an itera-
tive numerical scheme �2�. To calculate the ground-state en-
tropy, a conventional technique is to introduce a temperature
T and expand the field hi to first order in T at the limit T
→0 �6�:

hi = mi + Tri, �1�

with mi being an integer and ri a finite real value. A set of
iterative equations are derived to obtain the joint distribution
Pi�mi ,ri� of the values mi and ri for each variable i. The
ground-state entropy S0 is then the first-order term in the free
energy expansion F�T�=E0−TS0. This approach works for
some relatively simple problems �e.g., graph matching
whose configuration space is ergodic �6�, or random
Q-coloring and K-satisfiability �K-SAT� which have zero

ground-state energy �7–9�� but it fails for many other NP-
complete CO problems, for which the ground-state energy E0

is positive and the T→0 1RSB cavity equations are not
stable. For these latter systems, at T=0 the field hi is not
necessarily an integer and the correction ri in Eq. �1� usually
diverges at the T→0 limit. Consequently, although the T
→0 1RSB cavity method is able to estimate the ground-state
energy of a hard CO problem with high accuracy �as only the
value of mi but not that of ri is used�, it often reports a
negative or divergent ground-state entropy.

In this paper we use a different way to estimate the
ground-state entropy of a CO problem or a finite-
connectivity spin glass. We work directly at temperature zero
and, within the 1RSB cavity framework, calculate both the
cavity magnetizations and cavity entropies of each variable
in each macrostate. A very small cutoff � is naturally intro-
duced in the iteration of cavity magnetizations to avoid di-
vergence in the iteration of cavity entropies. This approach
gives good results when tested on the random vertex-cover
problem, the random 3-SAT problem, and the random �J
spin-glass model, even when the T→0 1RSB mean-field
spin-glass theory is no longer stable. It is also able to calcu-
late the entropies for other minimal-energy levels. Here we
focus on the vertex-cover problem �a prototypical NP-hard
problem �10�� to demonstrate the main ideas of this method.
Detailed calculations on other model systems will be
reported elsewhere.

Let us first briefly introduce the vertex-cover problem
�11,12�. A graph G contains N vertices and M edges. Each
edge �i , j� is between a pair of vertices i , j. The mean con-
nectivity of the graph is c=2M /N, which is the number of
edges a vertex on average is connected to. A vertex cover C
for graph G contains a subset of vertices of G such that for
each edge �i , j��G at least one of its extremities is in C. If a
vertex i is contained in a vertex cover C, we say it is covered
in C. The energy of a vertex cover C is defined as its cardi-
nality, E�C�= �C�. Graph G has many vertex covers, with en-
ergy ranging from the maximum value N to the minimum
value EG

0 =minC�C�. We denote by CG
0 the set of minimum

vertex covers �MVCs� of graph G :CG
0 = �C : �C�=EG

0�. To de-
termine exactly the energy E0 of MVCs for a graph in gen-
eral is a very hard computational problem; to count the num-
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ber of MVCs is even harder. Using the cavity method of
statistical mechanics, the mean energy density of MVCs for
random graphs has been evaluated in Refs. �4,11,13�. The
entropy of MVCs for a random graph was also estimated by
computer simulations �12�. This work complements Ref. �12�
by giving an analytical estimation of the ground-state en-
tropy SG

0 � ln�CG
0 �.

We denote by �i the probability of a vertex i being con-
tained in the MVCs,

�i =
1

�CG
0 � 	

C�CG
0

I�i � C� , �2�

where I is the indicator function. Similarly to �i, for a vertex
j��i �the set of vertices that are connected to i by an edge�,
we denote by � j�i its probability of being in the MVCs of the
cavity graph G \ i �which is obtained from G by removing
vertex i and all its edges�.

We consider here the ensemble of random graphs with
mean connectivity c. When the graph size N is sufficiently
large the length of a loop in the graph is of order lnc�N�, and
a random graph G is locally treelike. Consider the set �i of
vertices in the neighborhood of a randomly chosen vertex i.
If the edges between i and these vertices are deleted, in the
cavity graph G \ i the shortest length between any two vertices
j ,k��i diverges logarithmically with N. As a first step, it is
therefore assumed that these vertices are uncorrelated in the
cavity graph G \ i, and the probability of finding these vertices
in a MVC of G \ i can be expressed in a factorized form:

P��i � C:C � CG\i
0 � = 


j�i

� j�i. �3�

Equation �3� is called the Bethe-Peierls approximation and
the corresponding cavity method is referred to as replica
symmetric �RS�. Under this assumption, the energy and en-
tropy of MVCs for a random graph G can be expressed as �4�

EG
0 = 	

i

�Ei − 	
�i,j�

�E�i,j�, �4�

SG
0 = 	

i

�Si − 	
�i,j�

�S�i,j�, �5�

where �Ex and �Sx are, respectively, the contribution to the
system’s ground-state energy and entropy from a vertex
�x= i� or an edge �x= �i , j��. For example, �Ei=EG

0 −EG\i
0 and

�Si=ln�CG
0 �−ln�CG\i

0 �.
We shall distinguish three situations when writing down

the expressions for �Ei and �Si. The total number of MVCs
of cavity graph G \ i which contain the set �i is �CG\i

0 �
 j��i� j�i.
This number is positive if all the cavity probabilities � j�i
�0. In this case, when vertex i is added, it will not be in any
MVC of G but the set �i will be contained in every MVC of
G. Then we have �i=0 �vertex i is always noncovered�,
�Ei=0, and �CG

0 �= �CG\i
0 �
 j��i� j�i, and the change in entropy is

�Si=	 j�i ln � j�i. On the other hand, if in the set �i there are
at least two vertices that are not in any MVCs of cavity graph
G \ i, then vertex i will be present in all the MVCs of graph G.

Adding vertex i to a MVC of cavity graph G \ i results in a
MVC of graph G ��CG

0 �= �CG\i
0 ��. In this case �i=1 �i is always

covered�, �Ei=1, and �Si=0.
Now we consider the remaining case, namely, in the set �i

there is only one vertex �say j� which is not in any MVC of
graph G \ i. In this case, each MVC of graph G contains either
vertex i or vertex j but not both. The energy increase is
�Ei=1, and the total number of MVCs for graph G is

�CG
0 � = �CG\i

0 � + �CG\i,j
0 � 


k��i\j
�k�i, �6�

where CG\i,j
0 is the complete set of MVCs for the cavity graph

G \ i , j �the remaining graph after further removing vertex j
from G \ i�, and �i \ j is the set of direct neighbors except j of
vertex i. The first term on the right-hand side of the equality
in Eq. �6� is the number of MVCs that contain vertex i, while
the second term is the number of MVCs that contain j. In
this case vertex i is said to be unfrozen. The entropy change
�Si=ln�1+e−�Sj�i
k��i\j�k�i�, and

�i = 1/�1 + e−�Sj�i
k��i\j
�k�i� ,

where �Sj�i=ln�CG\i
0 �−ln�CG\i,j

0 � is the entropy change due to
adding vertex j to the cavity graph G \ i , j. We refer to �Sj�i as
the cavity entropy of vertex j. Notice that, in this case, to
properly calculate �Si, one needs to consider not only all the
MVCs of cavity graph G \ i but also vertex covers with a
higher energy EG\i

0 +1.
The energy and entropy contribution of an edge �i , j� can

also be obtained similarly. If at least one of the cavity prob-
abilities � j�i and �i�j is positive, then �E�i,j�=0 and �S�i,j�
=ln�1− �1−�i�j��1−� j�i��. On the other hand, if both �i�j and
� j�i are zero, then �E�i,j�=1 and �S�i,j�=ln�e−�Si�j +e−�Sj�i�.

On each of the 2M directed edges j→ i of graph G there is
a cavity probability � j�i and a cavity entropy �Sj�i. After all
these 4M values are determined, the total ground-state en-
ergy and entropy can then be evaluated using Eqs. �4� and
�5�. Starting from a random initial condition, the values of
� j�i, �Sj�i, and the cavity energy increase �Ej�i can be deter-
mined by the following iterative algorithm. Consider vertices
k in the neighborhood �j \ i of a vertex j:

�1� If all �k�j �0, then � j�i=0, �Ej�i=0, �Sj�i
=	k��j\i ln �k�j.

�2� If two or more �k�j =0, then � j�i=1, �Ej�i=1, �Sj�i=0.
�3� If only one �k�j =0, then �Ej�i=1, and

� j�i = �1 + e−�Sk�j 

l��j\i,k

�l�j�−1
, �7�

�Sj�i = ln�1 + e−�Sk�j 

l��j\i,k

�l�j� . �8�

When Eq. �7� is used to update the cavity probability � j�i,
sometimes � j�i becomes extremely close to zero. A cutoff � is
therefore introduced in the numerical scheme: If the obtained
value of � j�i is less than � we set � j�i=0. The theoretical
entropy values shown in Fig. 1 are obtained by setting a
cutoff value of �=10−10 �more discussion of the choice of �
is given below�.

The above discussion is concerned with one large graph
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G. As we are interested in the graph-averaged values for the
ground-state energy and entropy, a population dynamics
simulation can be performed similarly by storing a large ar-
ray of � j�i and �Sj�i and then updating this array �1,4�. The
ground-state entropy density s0=limN→� SG

0 /N as a function
of mean connectivity c of the random graph G is evaluated
by this numerical scheme �Fig. 1, up triangles�. The ground-
state entropy first increases with c and reaches a maximum at
c1; then it decreases with increasing c. For c	2.7183 the
RS cavity method is known to be valid �4,13� and it correctly
predicts the ground-state entropy and energy density for the
system. For c�2.7183, however, the RS prediction is sys-
tematically lower than the simulation result of Hartmann and
Weigt �circles in Fig. 1� and even becomes negative for c
�4.4 �such an entropy crisis was also observed in the hitting
set problem �5��. For c�2.7183 the entropy predicted by the
RS cavity method depends strongly on the cutoff �. If a
smaller � value is used, the entropy decreases even faster
with increasing mean connectivity c.

When the mean connectivity c of the random graph is
larger than 2.7183, the Bethe-Peierls approximation Eq. �3�
is no longer a good assumption, as there are strong long-
range correlations among distant vertices �13�. For example,
consider two vertices i and j whose shortest-path length is of
order lnc N and suppose these two vertices both are unfrozen
��i�0, � j �0� among the space of MVCs of graph G. The
Bethe-Peierls approximation assumes that the probability of
finding a MVC which contains both i and j is equal to
�i� j �0. However, it may be the case that there is not a
single MVC in which both i and j are present �13�. To take
into account such long-range correlations, in the 1RSB cav-
ity theory the MVC set CG

0 of a graph G is clustered into
many subsets CG

0,
 which are indexed by an index 
. In each
such subset it is assumed that the Bethe-Peierls approxima-
tion still holds, and Eq. �3� is replaced by

P��i � C:C � CG\i
0,
� = 


j�i

� j�i

 , �9�

where � j�i

 is the probability of vertex j being in the MVCs of

the 
th subset CG\i
0,
 of the cavity graph G \ i. Because of Eq.

�9�, the iterative equations for � j�i and �Sj�i as mentioned
before are still valid in each subset of MVCs. To characterize
the property of different clusters, a probability distribution
P j�i�� ,s� is introduced on each directed edge of the graph,
which is equal to the fraction of MVC clusters with � j�i=�
and �Sj�i=s. For a single graph G these 2M probability dis-
tributions P j�i can again be obtained by iterations, and the
corresponding distribution of P j�i�� ,s� among all the edges
of the random graph can be obtained by mean-field popula-
tion dynamics.

The iteration equation for P j�i�� ,s� reads

P j�i��,s� �� 

k��j\i

� d�k�jdsk�jPk�j��k�j,sk�j�

� e−y�Ej�i�� − � j�i��s − �Sj�i� . �10�

The value of the reweighting parameter y in the above equa-
tion is chosen such that the complexity parameter is equal to
zero �2�. In writing down Eq. �10�, it is further assumed that
the joint probability of observing the cavity values
��k�j ,�Sk�j� , ��l�j ,�Sl�j� , . . . for vertices k , l , . . . ��j \ i can be
written in a factorized form:

P��k�j,�Sk�j; . . . � = 

m��j\i

Pm�j��m�j,�Sm�j� . �11�

Details of the 1RSB numerical iteration scheme for the
vertex-cover problem can be found in Ref. �4�.

The mean entropy density of MVCs for random graphs of
mean connectivity c as obtained by this 1RSB cavity method
is shown in Fig. 1 �down triangles�. The theoretical predic-
tions are in good agreement with simulation results �12�. The
mean ground-state energy density as obtained by the present
method is also in good agreement with the simulation and
theoretical results of Ref. �4�. In the calculation we have used
a cutoff value �=10−10. Such a cutoff is necessary for the
random vertex-cover problem, as the 1RSB cavity approach
is not stable to further steps of replica-symmetry breaking
�14�. Figure 2 shows that the predicted value of the mean
ground-state entropy density is not sensitive to the cutoff
parameter � when ��10−5.

We also carry out lengthy population dynamics simula-
tions at finite temperatures using different protocols. The en-
tropy values obtained at T=0.091 and 0.04 are shown in Fig.
1. At these low temperatures, although the obtained energy
density values are almost indiscernible from the ground-state
values, there is still a gap between the finite-temperature and
the ground-state entropy densities when c�2.7183. If the
temperature is lowered further, the quality of the simulation
results deteriorates, possibly because of insufficient popula-
tion size and insufficient equilibrium and sampling times. We
were also unable to remove this gap by using instead the
expansion Eq. �1�, because the population dynamics di-
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FIG. 1. �Color online� Ground-state entropy density of the
vertex-cover problem as a function of the mean vertex degree c of
the random graph. Circles are simulation data �11�; up and down
triangles are, respectively, theoretical results obtained by the
replica-symmetric and the 1RSB cavity methods. The finite-
temperature entropy density values at T=0.091 and 0.04 are also
shown as a comparison.
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verges. In comparison with these approaches, the zero-
temperature direct method is computationally much more ef-
ficient and also easier to implement.

In summary, we have calculated the ground-state entropy
for the random vertex-cover problem using the 1RSB cavity

approach of spin-glass theory. In our method, both the cavity
probabilities � j�i and cavity entropies �Sj�i of each vertex j in
a cluster of MVC solutions are recorded. We have paid spe-
cial attention to unfrozen vertices �each of which belongs to
some but not all MVCs of the graph�. As demonstrated by
Eq. �6�, the entropy contribution of an unfrozen i comes not
only from the MVCs of the graph G \ i but also from other
higher-energy configurations of G \ i. Similarly, the cavity en-
tropy �Sj�i of a vertex j also has two sources of contribution.
Equation �6� is rather simple for the vertex-cover problem,
while for some other NP-hard CO problems and spin-glass
models �e.g., the random-graph �J spin glass� counting the
entropy contribution of an unfrozen vertex can be more com-
plicated. A cutoff parameter � is introduced so that, if � j�i
	� in one cluster, it is set to be zero. With this cutoff pa-
rameter, the present cavity method can still give good esti-
mations for the ground-state entropy of a hard CO problem
or spin-glass system even if more steps of replica-symmetry
breaking are needed to fully describe the system.
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FIG. 2. Predicted mean ground-state entropy of the random
vertex-cover problem at connectivity c=10 as a function of the
cutoff parameter �.
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